5. A particle of mass m is moving in a circular path of radius a, with a constant velocity v as shown in the figure. The center of circle is marked by 'C'. The angular momentum from the origin O can be written as:

[JEE MAIN (Online) 2014]

- (A) $va(1 + cos 2\theta)$
 - (B) $va(1 + \cos \theta)$
- (C) $va cos 2\theta$

Solution

 ΔOPC $\frac{x}{\sin(\pi - 2\theta)} = \frac{a}{\sin \theta}$ $x = 2R\cos \theta$

$$|\overrightarrow{L}| = mvx \sin \phi(\phi = 90^{\circ} - \theta)$$

= M3acos θ c cos θ = Mva[1 + cos 2 θ]

